diff --git a/README.md b/README.md deleted file mode 100644 index 9af26d2..0000000 --- a/README.md +++ /dev/null @@ -1,27 +0,0 @@ -PyWatts - Predict Output of Solar Panels - -# Dependencies - -PyWatts is based on python3.6 and uses the following dependencies: - -* requests (2.19.1) -* pypvwatts (2.1.0) -* numpy (1.15.0) -* peewee (3.5.4) -* scikit-learn (0.19.2) -* pandas (0.23.4) -* tensorflow (1.9.0) -* matplotlib (2.2.3) -* scipy (1.1.0) - -We suggest using a python virtualenv. - -# Execute - -The script can be executed by issuing the follwing command: - -```bash -$ python photovoltaic_gruppe4.py data.json -``` - -The output can be found in the same directory in `test_data_gruppe4.json` diff --git a/photovoltaic_gruppe4.py b/photovoltaic_gruppe4.py index 9183523..1285faf 100644 --- a/photovoltaic_gruppe4.py +++ b/photovoltaic_gruppe4.py @@ -21,26 +21,9 @@ feature_col = [tf.feature_column.numeric_column(str(idx)) for idx in range(336)] n = pywatts.neural.Net(feature_cols=feature_col) predictions = [] -total = len(queries) -for idx, query in enumerate(queries): - - percent = idx / total - sys.stdout.write("\r") - progress = "" - for i in range(20): - if i < int(20 * percent): - progress += "=" - else: - progress += " " - sys.stdout.write("[ %s ] %.2f%%" % (progress, percent * 100)) - sys.stdout.flush() - +for query in queries: if oneH: predictions.extend(predict(n, query).astype('Float64').tolist()) else: predictions.append(predict24h(n, query)) - print(predictions, file=open("test_data_gruppe4.json", "w")) - -sys.stdout.write("\r") -print("[ ==================== ] 100.00%")